Statistical decision theory and multiscale analyses of human brain data
نویسندگان
چکیده
منابع مشابه
Statistical decision theory and evolution.
Two recent articles by Geisler and Diehl use Bayesian statistical decision theory to model the co-evolution of predator and prey in a simple, game-like environment. The prey is characterized by its coloration. The predator is characterized by the chromatic sensitivity of its visual system and its willingness to attack. The authors demonstrate how the coloration of prey and the perceptual system...
متن کاملStatistical Decision and Learning Theory
This paper reviews and contrasts the basic elements of statistical decision theory [1–4] and statistical learning theory [5–7]. It is not intended to be a comprehensive treatment of either subject, but rather just enough to draw comparisons between the two. Throughout this paper, let X denote the input to a decision-making process and Y denote the correct response or output (e.g., the value of ...
متن کاملStatistical Decision Fusion Theory
By combining information theory, statistical decision theory, and maximum entropy to address the decision fusion problems, a statistical decision fusion theory is obtained. The theory explains why decision fusion is so difficult and why the performance of decision fusion systems does not always meet expectations. The theory suggests how statistical decision systems such as the conceptual "Famil...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience Methods
سال: 2020
ISSN: 0165-0270
DOI: 10.1016/j.jneumeth.2020.108912